
The Software Dragons

(ErrorLog:Documentation:Introduction).

c©1999 Vitaly Rudovich,
All rights reserved.

(Version 1.2.4)
17th November 2004

El Sueño de la Razon Produce Monstros.
(The Sleep of Reason Produces Monsters.)

Francisco Goya

1 Introduction

This paper is the result of my experience in the area of the software development.
Twelve years ago I had written my first program in Fortran. I was delighted with
the possibility to transform a text written by a human in a sequence of rational
actions executed by a computer. Right from the beginning I was interested in
one other magic too. This was a process in the human’s head that transformed
unclear ideas into the strict text of a program. All this years I studied humans
working with the computer. This time I have some rest. I’m currently not
forced to write computer programs and can write about writing of computer
programs. [sic]1

The form of this article may be not usual for you. It is not scientific-like. I
had read many wise books and know many scientific-sounding words, but I use
simple terms. Here are no mathematical models, statistical results or quotations
of “classical works”. This paper is a fairy-tale for software developers.2

The subject of the article may look simple. It isn’t. You should have some
experience in real software projects to understand the concept. Maybe it isn’t
reasonable for you to read this, if you don’t have any assumption what a Software
Dragon may be. You can and shall interpret the things I write about in your
own manner. There are a lot of examples in the article. They are added not only
to explain the Software Dragons, but also to help you to remember examples
from your own experience.

1 I should apologise for my English. I write in English, but I don’t think in English. As
results there are some conflicts between grammar and contents. In all cases contents was
preferred. Of course this aspect of the article is the subject of improvement. If you’ll help
me, please visit my site.

2 Some people replied that I dislike science. This is not true. The situation is simpler. I
hope I have what to say and I won’t hide my toughs behind complex words.

1

http://home.pages.de/~Vit/ErrorLog_Dragons.html


This article is an introduction into the Software Dragons. It describes the
problem in common. From this article you get to know how and for which
purposes you can use Software Dragons in your own work.3

2 The Software Bugs

The Dragon is a very good term to describe many problems of the software
industry. To introduce it I begin from other things. This is not the easiest way,
but I have my own reasons to choose such course.

At first consider one more simple and ordinary creature. This is well known
“program bug”. There was many times explained that the term “bug” shouldn’t
be used. I think you have read some of these articles. We’ll consider one more
interesting question, why programmers use this word and why they like to use
it?

Let’s define “bug” as a virtual creature that had crept in the program, hides
in the program code and disturbs the correct execution of the software. The
“real” cause of the problem is usually an error of a programmer. As rule this is
the programmer seeking the “bug”. The will to hide own faults is one of reasons
to speak about “bugs”, but this is not the primary motive. The programmer
itself acts in the manner he is catching in his program a small and crafty insect.

In the companies, where bugs are attribute of life, the work is usually bor-
ing. The time pressure, bad management and absence of rewards may make a
programmer unhappy. As a normal human he’s seeking things that can make
his existence more valuable. Frequently solution is the virtual world of games.
A man can take pride, if he have killed all monsters and got more points as
yesterday. Many programmers I know are fans of computer games.

If you remember how looked computer games fifteen years ago, you can say,
that the modern debugger is much more interesting to play with. I had spoken
with many people about grounds of their bad programming style, absence of
comments, bad documentation. One of common signs of these people is the
love to a beautiful game. The game getting fun. The game whose results are
important for other people. The game where the reward is money and better
staff position. This game is a war against small software monsters. Most gamers
call it the “debugging”.4

One may say these are not monsters and “bug” is a technical term. Don’t
be mistaken. If a human is looking like he is playing, if he is feeling like he is
playing, if he is speaking like he is playing, then he is playing.5

3 You cannot find here prescriptions how to treat your problems, at least your current
problems.

4 Ruslan Shevchenko had noted that the “debug” game is interesting by itself and is
not caused by bad management. This is partially true. The value of “debugging” may be
extraordinary high for the people that like seek solutions of very complex problems. As
rule these people are already scientists. I had asked one such scientist about his wonderful
programming style. He replayed that he doesn’t need formal things and even comments, while
he is working in a RESEARCH organisation where the members ether have PhD or masters
degrees.
I should note here that some other scientists have the best programming styles I had even
seen.

5 The psychologists have found many games in the humans’ behaviour. The world of
software is a would of many kinds of very interesting games. There are games for programmer
and for user, for clerk and for manager, for beginner and for expert, for one participant and

2



If you have understood this point of view on software bugs, we can return to
the primary subject of this article. The bugs are small software monsters. They
haven’t power and are enjoyable to play with. I won’t describe them below.
We’ll consider the more dangerous and bigger kind of virtual software monsters.
The monsters who bring not pleasure but terror.

To come to The Software Dragons we need firstly go into other hidden areas
of the programming. Let’s consider the nature of the software.

3 The three results of a software project

Suppose. One company has finished a software project. The management values
the results as very good. The firm sells many copies of the software. The
customers are satisfied with the product. Everything seems to be OK. Of course
the product has some problems. There are some errors in the software. The
users will get some additional features. On the market come some new programs
and the firm’s program must be supplemented to support them. None of the
problems seems to be dangerous.

The firm starts one new project to solve these small problems and produce
the next version of the software. The second project goes not as well as the
first, but nobody notices any danger. Only after missing of many deadlines and
exceeding of budget management becomes the opinion that the second project
goes not normal and simple changes are not simple. Sometimes it’s too late.
New version cannot be ready in the time it should be and the company loses its
market share.

This situation repeats many times. It is described in many articles and books.
Most of them discuss the errors and the problems of the second project. Only
few of them consider the first “successful project” as the primary source of
future failures.

The problem is that usually only two of three project outcomes are consid-
ered. Let’s describe them from the point of view of a software firm. It’ll be
helpful for future use.

The first and most visible result of a software project is the software. It is the
source code passed through compiler and linker. These are project documents
being processed by computer for one other computer that executes the program
code. There are some variations, but the idea is clear.

The second result is the documentation for the users. We consider all the
information user can get from any sources in the way other than trying to work
with the software. These are user manuals and tutorials, advertisement and
support, books and articles, etc. These are project documents being processed
by people for other people outside the project.

Usually the project is valued as successful, if these two outcomes are good.
They are important for financial results of this project, for the customers, for
the market position of the firm. In many cases they are only results to be taken
into account.

In case the project were the last project of the firm, this opinion were right.
Of course it may be last, but it would be strange, if the management predict
that the next project won’t start or will be full unsuccessful.

for big teams. The description of them is the subject of the other article(s).

3



The third outcome of the project is usually forgotten. It can be invisible
for high management, for marketing or for support departments, even for the
management of the project itself. Unfortunately it can be more important as two
others. This is project information being processed by people and sometimes
by computer for members of this project and for members of future projects.

There are many different software standards, but only a little part of them
are made for the improvement of the third outcome. Most others I have seen are
applied only to report to management about the presence of the development
standards. Usually none of the project members accepts the third outcome as
one of the project tasks. As result only a little part of the project documents is
good enough to be used after end of this project. The other part is bad enough
to rise a big number of problems in the following projects.

We approach to the world of Software Dragons. They are virtual software
monsters. We cannot observe any material signs of them. We cannot measure
them. Only one thing we can see are traces of them. These are missed deadlines,
devoured resources, loss of quality and killed projects.

Software Dragons are virtual. To exist they need a material object to reflect
them. The material mirror of the virtual Dragon is a project’s staff. To define
Dragons we must consider the developers before. Let’s describe what they are
doing in the manner similar to our description of developers being in the world
of bugs. We’ll consider the third outcome of the project.

4 The third outcome

The software can be described from different points of view. The best proce-
dure for our tasks is to consider software as a result of the human’s activity. To
simplify our model we’ll speak only about the mental activity. We won’t inves-
tigate such things as the speed of typing or the number of errors by drawing a
diagram.

In other words our primary subject is the process in the human’s head.
There are many models describing it too. Let’s make or model maximal simple
and maximal applicable to solve real problems. We get out all activities that
can be made by a computer and all human’s activities that aren’t bound with
the information. The rest is the human’s ability to make decisions.

There is a principal difference between solution and decision. The solution
can be found, if a person has a task to solve, all information needed and a
method to apply. In case of decision a human may or may not have enough
information, appropriate method and even the task itself. He can have even an
information conflict, where facts he knows demand quite different decisions. To
find a solution one can use formal or empirical methods. To make a decision a
human or a group of people must use a mixture of knowledge, experience and
intuition.

We won’t consider the chemistry of the process of the decision here. Let’s
use the following simple black box model:

1. A human or a group of people gets information to make a decision.

2. Different factors are applied to this person or group when he or it is making
a decision. These factors can be random or systematic, measurable or
hidden, informational, psychological, social etc. For us is important only

4



the existence of them and the fact that we cannot take into account all
the factors influenced the decision.

3. The decision is made and applied to the software. In other words the
person or the group decides to do something or not to do something with
the software product and/or the process of software development.

We consider a simplified model. In our model the software is the result of all
decisions about software.6 The word “decision” will be used below in meaning
of the result of a decision, not of the process of making it.

In general the decisions about software are hierarchical and sequential. The
first and main decision is the decision to start a software project. All other
decisions are depended from it. In a real project some decisions are independent,
some can be made simultaneously. We haven’t any method to prove such facts.
To simplify our model we don’t consider this problem now.

For instance in our model the decision to code an operator in a function can
be made only after one have decided which function must be coded and which
programming language must be used. The decision to code a class member
function can be made only as a result of the decision to make this class. The
decision to use a class in one module cannot be made without the decision to
make this module, etc.

Now we can define the third outcome of a software project. To make a de-
cision one need the information and the experience. Let’s say that third result
of a software project is a distributed knowledge base about the software prod-
uct and the process of development such kind of software. If we consider this
project’s outcome together with the project’s staff, we can speak about a kind
of distributed expert system. In most cases the knowledge base cannot be sep-
arated from this expert system because large part of it is hidden in the heads
of people. Of course this part is subject to lose by time and staff changes.

The quality of this knowledge base and this expert system defines the quality
of the current software development process and of the future projects. The
second problem must be considered is the cost of them. DoD organisations
make complex and expensive things to raise the quality of this knowledge base.
However the projects in such organisations fall too. The firms doing ordinary
software business are unable to carry analogous cost.

There exist a problem how to get this knowledge base maximal cheap without
loss of quality. The second problem is how to make this expert system maximal
effective and stabile. In other words there exist a problem how to force good
decisions about software and how to prevent bad in the future.

The solution of this problem is not the primary subject of this paper. Let’s
return to the main path.7 Now we are ready to speak about Software Dragons.

6 I repeat again, we consider a model. The live software development is more complex.
Don’t miss the model with the reality.

7 Some people, who had read first drafts, asked me to continue this theme. This is the
subject of other parts of the project “ErrorLog”.

5



5 Why the Dragons?

There are two possibilities to write an article about software. The first and
most common of them is to describe a problem then to give a solution. This is
a good way to introduce a new Method or a new Measurement System or a new
Tool. Most of the articles I have read are written in such manner.

This article is written in a form rare to find today. I have described the
problem. Now I’ll explain why this problem is more complex as you mean. This
is a good way to introduce Software Dragons.

I think you already have got at least two ideas about third outcome of
a software project.8 Suppose I’ll write the first form article. To introduce
the solution I’ll expand the above black box model to make a model of the
solution of a problem. I’ll describe ways a project member or a project team
gets the information. I’ll describe some factors that influence the decision. I’ll
describe how the decision can be applied to the software product and to the
software process. To make the model complete I’ll say that other factors that
may influence the decision are small or unimportant. The most common and
simplest way is of course don’t speak about them at all.

Such kind of solution is not correct. You can apply it only in the universe
of the model. An attempt to use it in the real world for a real project can lead
to disaster.9

What is wrong? Wrong is the presupposition that the factors you cannot
describe, measure or observe and the factors you don’t know about may be
not considered. They cannot. Even invisible factors can be neither small nor
unimportant.

This fact is negative. It cannot be used for any constructive purpose. To
avoid this problem we need to introduce some positive virtual objects having
the same effect in the real world.

The most important task for us is to get results at least not worse as we
want. Firstly we need to separate negative and positive effects. The virtual
object having the positive influence on the process of a decision is well known
and has the name “good luck”. I won’t describe it below. We’re interested
about evil things. We’ll describe the nature of “bad luck”. Let’s consider what
may be wrong with a decision.

6 The bad decision and its role in a software
project

Let’s define a decision as bad, if one of the following decisions must be the
opposite decision. This definition is pure theoretical. In most real situations we
don’t know what decision must be corrected. We cannot prove a decision. In
case of a solution we may find a formal method to check it. There are no such
methods to examine a decision. Usually there is a person who says that his own
speculations are the correct proof. Unfortunately they aren’t. The worst fact is
that they cannot be.

8 If you haven’t, you may have not enough experience to understand this paper.
9 Of course it may be successful too. In this case I can speak about “proved solution”. All

failures may be explained as the results of incorrect use. Well, a new kind of Silver Bullets is
ready to be used.

6



For practical purposes we can use two following “soft” rules:

1. If one decision is the opposite of one previous, this previous was probably
bad.

2. If a software project has fallen, some bad decisions had probably been
made.

As you see we can form an estimate only for the decisions in the past. More
interesting is that such estimation is a decision too. Consequently in the future
we may detect that this decision was wrong.

It is wise to find a bad decision early. One decision implies some work to
realise it and a number of additional decisions that imply additional work too.
If the primary decision is bad, a part of this work was probably not needed to
be done. This is waste of time and resources. We can define it as the cost of the
bad decision. Of course if the bad decision was corrected before this unnecessary
work was done, the cost of the bad decision is lower. Consequently we can speak
about the potential and the actual cost of a bad decision.

One other interesting thing is the correction of a bad decision. Common
practice is to make a big number of lower level decisions, where the right action
is to come to an opposite decision of the same level. The economical reason
may be the attempt to save actual cost of the bad decision. The political
reason may be the “polite valuation” of the decisions being made by higher
level management. In comparison to getting results in a right manner this leads
to waste of time, money, product quality, etc. Let’s define this difference as the
cost of the crooked way. It is a part of the actual cost of the bad decision about
the correction of one other bad decision.

We need a name for cost of developing software without bad decisions. Let’s
define it as the optimal cost. It may be possible to reduce optimal cost with
some magic, for instance due “good luck”. This isn’t the subject of our article.
We’ll consider the possibilities to reduce the cost of a real project to reach the
optimal cost.

Usually the optimal cost is less than the cost of the crooked way. As result
the correction of the bad decision is more profitable. In some situations the
opposite may be true. Let’s define this as the stabilisation of the bad decision.
Principally the stabilisation can be endless. This is usual for low level decisions.
The high the level of a bad decision is, the quickly the cost of the crooked way
rises. If a high-level bad decision won’t be corrected, the potential cost of it
shall be paid sooner or lather.

The interaction of bad decisions may be complex. For our purposes we need
remember that it is not lineal. We can estimate the potential cost of a bad
decision as lower or equal to the potential cost of the bad decision of the higher
level. If a result of one bad decision is one other bad decision, the actual cost
of the first can rise to its potential cost. Consequently we can say that a bad
decision may save actual cost of one previous. It isn’t good to believe in this.
The opposite result is more frequent.

I feel this theoretical speculation shall be explained. Let’s consider some
examples.

Our first example is quite extreme. Suppose management decides to begin a
project to develop a software and there is no potential market for this software.

7



The primary decision to start the project is a bad decision. Even all lower
level decisions and all other work is perfect, the project cannot be successful.
The result of the project is useless. Theoretically the potential cost of this bad
decision is infinite. In any real situation it is limited by project’s resources. In
our situation the potential cost of the bad decision is the upper limit of time and
money the company can waste to develop this useless software. Of course we
may add the money spent to marketing in empty market, the indirect losses and
the cost of support too. These are results of other bad decisions. In our model
we’ll consider only loses within the budget of a software development project.

Actual cost of the bad decision about useless project is as rule lower than
potential cost. Firstly management may save money by applying new progres-
sive support tools and development methods. The staff experience is one other
thing that may save budget. It is a positive effect of the project. Of course
hardware and software that the company have bought for this project may be
used for more reasonable purposes too.

As second example consider a decision to use a programming language that
isn’t appropriate for the design of the software product. The potential cost of
this decision are all resources the company can spent for coding and testing. This
extrapolation has the following reason. After the project reaches some definite
size the problems with the language will rise the complexity very quickly and the
development won’t be done further. Of course the project’s staff will adapt the
language to its tasks. Many support tools and crafty tricks may be developed.
The resources spent for them are the cost of the crooked way. This leads to the
stabilisation of the bad decision about programming language. If a next task
is to add some little function, it is not reasonable to change the language and
write all the source code anew. Bigger tasks can be unreachable with the old
programming language. If the cost of the crooked way exceeds the resources of
the project, the project usually falls. Only the correction of the bad decision
can help. Of course the situation is fatal, if there are no resources to do things
in the right manner and the crooked way cannot reach the project’s goals too.

I hope you have felt, what the bad decision is and I can close this theme.10

Didn’t you forgot that we’ll speak about Software Dragons? Now you are ready
to accept the following definition.

7 The definition of The Software Dragons

Software Dragons are virtual software monsters. They have evil nature and
may grow to very big sizes. The power of one Software Dragon is usually more
than the power of one project member. The Software Dragons devour resources
of the software project. They force project staff to make bad decisions and to
spend resources to materialise them. They hide bad decisions and prevent the
correction. In case a bad situation in a project cannot be hidden, they force
people to follow a crooked way. They do all possible to raise actual cost of a bad
decision and the cost of a crooked way. The highest goal of the Software Dragons

10 The first reaction about the cost of a bad decision was quite morbid. I want to warn you.
It may be interesting to write an article, a book or a doctor work and find hundred and one
method to convert my descriptions into numbers and formulas. I think this is not worth to
do. Either you get the method less precise than a meaning of an ordinary expert or the cost
of the measurement will be more then the cost you try to find.

8



is to devour all resources that company may spent for a software project. If they
reach this goal, the project has no chances to be successful.

The Dragons live around and in software projects. They grow devouring
resources. They force bad decisions to get their food. The more bad decisions
the people have made, the more the amount and bigger the size of the Dragons
is. We can say that a software project has the fourth outcome. This is an army
of Software Dragons. Let’s speak that a software project has three good and
one bad results. If the power of the bad result is bigger than the power of three
others, the following project has big chances to fall. If a Dragons’ army exceeds
the strength of the good outcomes before the end of a project, this project is
going to be hopeless too.

For instance consider the situation with a not appropriate programming
language. If the project is “successful” finished, the company has not only a
“working software”. The satellite of this software is the Dragon of Previous
Expenditures. It will prevent the change of the programming language and
protect bad software design. As result a lot of money will be lost by maintaining.
The more resources are spent the more power this Dragon has. The tangle
of problems will grow continually until all resources are intended to feed the
Dragons.

8 How Dragons can help you

Well. We know who Software Dragons are. They disturb your work. They are
evil. They are dangerous. They are your enemy.

This is a weighty argument to study Software Dragons. If you know your en-
emy, you have possibility to make a defence. You can protect yourself from their
evil business. There are many advantages to speak about Software Dragons.

8.1 You can call things with their names

The most important ground to introduce Dragons is the possibility to call things
proper. Speaking about Dragons you describe our world. This description may
be unusual. You cannot find a formal proof for it. It may sound “not serious”.
At the other hand this explanation is clear. It contains no “wise words” and
“scientific definitions”. Such things aren’t good in themselves. Special terms
may be used to clear the thoughts and to hide them.

For instance a mathematician uses special terms in his proof and an other
mathematician gets the whole information from few words. A physician uses
Latin terms to describe illness and a patient doesn’t understand anything, but
gets an impression about wise doctor. The second situation repeats in the
software branch much more frequently. The Software Dragons can help you to
avoid the smog of “scientific” words.

For instance a manager says that he’ll buy a software system to introduce
the new process of the software development. He boasts that this process saves
a lot of money. It increases the productivity of the staff in many times. It uses
best scientific proved methods. As result all projects shall be done in time and
within budget. This is a well-known fact. The Method is simple and can be
used by ordinary persons. The manager is going to fire unnecessary experts and

9



won’t waste money for consultants.11

In case one believe in the words “scientific proved” and “best”, he can make
a big mistake. The software development is an activity of humans. This is a
process of thinking. The science doing research of this process is called psychol-
ogy. It doesn’t know what is “best”. It is very careful with “scientific proved”.
(Above all if a proof was be done on statistically incorrect group, what is the
usually situation in SE.) Some facts in psychology are well-known, unfortunately
the interpretations of them are very different.

Of course it is possible to make a psychological analyse of the manager from
our example. We may mount a scientific base under the analyse of the decision
about the introduction of “the new Method”. This analyse should be done
by professional psychologist and is complex. Fortunately we can estimate this
decision much more simple, if we translate the manager’s words in the terms of
Dragons. It would sound like this:

The Dragon of Lost Control is devouring our projects. To win the
war against this Dragon I’ll buy the newest Silver Bullets. This is
The Magical Universal Process. This is a best way of treatment
for our company. It promises rapid changes and has extraordinary
magical power. I’ll apply it, kill the Dragon and become The Lord
of Software.

8.2 You can avoid the fear and other emotions

The second ground to introduce Dragons are emotions. Software development
is a humans’ activity. The problems and mistakes are humans’ problems and
mistakes. Consequently they are bound with strong emotions. Nobody can
speak about personal errors without feelings. Even the phrase “I had made an
error” is accepted different as “An error had been made by me.”

Emotions disturb the analyse of problems. They hide and distort informa-
tion. They make a point of view very subjective. As result each error analyse
becomes the game of the searching of a scapegoat.

To avoid this problem we need use something that isn’t bound with strong
feelings. Virtual software monsters are good tool for this purpose. We have seen
such situation with software bugs. It’s simpler to speak about virtual monsters
than abut personal mistakes.

The strongest of emotions in software projects is the fear. It is the cause
of many mistakes. Fear paralyses the human’s logic and force to make bad
decisions. Very frequently people say, “I know how to make it proper, but I
cannot act in such way.” To abstract from the source of the human’s fear we
can consider a Dragon. The human may be afraid of a Dragon. The Dragon is
big enough and harmful enough to force the human make the same mistakes.

The analyse of feelings in a group of people is a complex and expensive
measure. Sometimes collective emotions are more powerful than one separate
team member has. Evil Dragon’s nature can help to describe the sources of
errors without complex psychological analyse. It can help to explain collective
errors. The errors which weren’t be made by each separate person alone. As
result it can help to find a possibility to avoid such errors in the future.

11 And they do this. I seek experts and “best programmers” that left a company in a such
situation. I have a number of questions to ask.

10



Let’s consider one example with the Dragon of The Deadline. A group of
programmers is developing a software module. Each knows that the module
must be redesigned. Nobody begin to do this. The Dragon of The Deadline re-
peats consequently, “We haven’t time for such big rework.” As result the group
is trying to solve problems with “small changes”. Consequently the deadline
is missed. The delay is much more than the time were needed to rewrite the
module from the beginning.

You can analyse the cause of this error in terms of Dragons. You can ask
group members what they mean about the Dragon of The Deadline. You can
discuss with them, how this Dragon has forced the group to do wrong things.
Consequently you can find together, how to protect the next project from the
influence of this Dragon.

Of course you may ask them the direct questions too. For instance are they
afraid to say management about unrealistic time planing? In this case the most
likely answer will be “Not”. Above all in case a manager is participating in the
discussion.

The most interesting thing is that people don’t lie. They are afraid, but
they think that they aren’t. Feelings are complex to analyse. At first if they
are the own personal feelings. A human older 6 years can excellent lie himself.

8.3 You can compose a life model

The Dragons can seem antiscientific. They aren’t. Let’s say that the Software
Engineering may have two directions of research. The first is science and de-
scribes how the world is. The second is “science” and describes how the world
should be without consideration of the reality.

Each science operates with models. These models are logical constructions
based on axioms. A model should mirror the real world. Unfortunately it can
produce a wrong image. At first the construction of the model my be not correct.
Much more terrible is the fact that axioms may not match the real world. A
model can be proved logical or mathematical. An axiom cannot. Only one
possibility to proof axioms is to predict something and then to measure the
results of an experiment. If experimental results don’t conform to predictions,
the axioms are probably wrong. Of course there exist experimental errors too.

The human is a very complex object to measure. A group of humans is much
more complex.12 Even you measure ten parameters there exist 100 others that
you don’t consider. Maybe there exist 1000 additional you don’t know about.

Much worse for measurement is the fact that humans have his own will. They
aren’t computers. If you measure them, they know that they are measured.
They have their own targets and change results of your experiments according
with them. Consequently you can always get results predicted by a theory, even
the theory is completely wrong. You get what you will, not the true.13

Using Dragons you apply your intuition. This tool is created by millions
years of human evolution. It is tuned for deal in complex situations. You
observe facts from real world and synthesise an intuitive model for practical

12 Are you bored from my infinite repeats of this “is more complex”? This is a clear sign
that you don’t understand how complex the human is.

13 There are precise psychological experiments. Unfortunately they are very expensive and
complex to implement. For instance could you apply electroshock to get pure true unconscious
reactions?

11



purposes. It may be not-scientific, but gives better results as the model based
on a “good theory”. You create an other point of view. You have no artificial
laws you should to follow. If your model don’t conform to the reality, you
have no “scientific-based” obstacle to change it. Even in case the Dragon-based
model is wrong, you may find the way to overcome your problems. You have
no “scientific” limits and can use your creativity.

8.4 You can stimulate your own creativeness

The Dragons are one other view on the problem of the software complexity. If
you want overcome Dragons, you must concentrate not on the measurements.
You must find ways to reduce the complexity and prevent the addition of new
problems.

Most problems of software development are psychological problems. Only
few experienced professionals are able observe and describe them. Most people
feel that something is wrong, but cannot understand what. Dragons are a good
psychological method to activate hidden knowledge. One can describe with
metaphors the things he cannot formulate any other way. Dragons are partially
a fantasy, partially a game. Even the others cannot understand the proper
interpretation, they can feel it.

One other good thing is the personification of problems. Abstract dangers
don’t impress. The people know what “should be done”, but don’t do this. A
Dragon is a good ground to make things right. Even a virtual Dragon is more
real for a human than hundred tables, diagrams and guidelines.

For instance a developer doesn’t write “useless comments”. He knows the
purposes of comments, but won’t waste time for such things. He thinks that
nobody will understand the source code wrong. If the developer knows about
the Dragon of The Source Code, he knows the face of enemy and has one other
position. He understands that he must explain what the code does, because the
Dragon has evil nature. If he don’t write about possible problems, the Dragon
of The Source Code want to use them to introduce errors in the program. The
programmer now protects the code from enemy. This is much more effective
than to follow abstract guidelines.

9 The Dragon Wars

We consider Software Dragons to find a procedure to overcome them. Let’s
describe firstly the usual counteraction. This is a war against Dragons.

Consider a typical software project. Even the people don’t speak about
Dragons, they act as they fight against big and powerful monsters. Unfortu-
nately such wars begin when Dragons have a lot of power.

A little worm may months or years live in the shadow of a big project.
Nobody knows about him. Nobody is afraid of him. Even nobody see how the
Dragon grows in the dark.

But the time comes and the people understand that the project is in the
shadow of a big Dragon of The Project’s Complexity. All of the deadlines burn
in the Dragon’s fire. The excellent project structure breaks down from one hurt
of the Dragon’s tail. All resources are devoured by Dragon.

12



The people begin to make war on the Dragon of The Project’s Complexity.
They don’t attempt to understand the Dragon, they don’t speak about Dragon,
but they seek Silver Bullets to kill the Dragon. They arm with CASE tools,
modern methods, later generation languages and a heap of software. They battle
against The Dragon of The Project’s Complexity and the victory comes near
and near. The Dragon is smaller and smaller.

But the time comes and the people understand that the project is in the
shadow of an army of Dragons. Different kinds of Software Dragons were coming
from black shadows of CASE tools, of modern methods, of lather generation
languages and of the heap of software. Deadlines burn again. Project structure
breaks. Resources are devoured.

It may seem strange, but the most frequent conclusion from Dragon Wars
is the decision to find Silver Bullets with more magical power. Silver Bullets
casting industry is a very profitable business today. Silver Bullets have now
“scientific” names and wise explanations of magical effects. Unfortunately such
things cannot help against Software Dragons. The “scientific” smog is created
by a Dragon too. This Dragon is one of most damaging Software Dragons. His
name is The Dragon of Silver Bullets. This Dragon makes fog of “scientific”
words and tells “proved” tales to hide other Dragons.

If somebody is under power of the Dragon of Silver Bullets, he cannot over-
come other Dragons. He doesn’t see the real problems. He believes in the
existence of a simple and cheap solution. He doesn’t solve problems, but seeks
The Right Silver Bullet.

Maybe Silver Bullets are good. However we know that wizards are rare to
meet today. People in wizards’ clothes are more frequent, but they cannot give
to the bullets enough magical power. Even they use wise words and “scientific
proved” methods.

The people being under control of the Dragon of Silver Bullets are charmed
with buzzwords. They open their purses and hope in the power of magic. If
you know about Dragons, you know that to kill them you need not only bullets
made from silver. You can check the real magical power of a wizard who sells
such bullets. For instance you may ask about his magic wand.

The second problem of Dragon Wars is the fact that Software Dragons aren’t
absolute. One may describe problems of the same project in his own manner.
For instance project members can see The Dragon of Abuse Management. In
the contrary management can consider The Dragon of Stupid Employers as the
ground of project’s difficulties. Unfortunately the strategy of the Dragon War
is dependent on the enemy Dragon. In our example the management will attack
the employers as servants of the Dragon. The developers will protect themselves
from the Dragon of management. As result the development of software will be
forgotten. The project becoming the war of Dragons. All power will be spent
on intrigues.

The problem of Dragon Wars is the power of the Dragons. Such wars begin
where the tangle of problems is too big. Some difficulties may be removed, where
the complexity of other grows. As in fairy tales the hero killed dragon become
the new dragon. No magical transformations are reasonable to be planed. Any
change can bring only about 10 per cent improvement.14

14 This rule may have the following explanation. The progress may be much more than 10

13



It is complex, expensive and improbable to win a war against big and pow-
erful Dragons. Only possible method is to avoid the necessity of such wars.

10 How to overcome Dragons

Dragons cannot be destroyed quickly. On the other side they become big and
powerful not immediately too. This gives a possibility to overcome them.

Small Dragons are difficult to find. The host of small ongoing problems
disturbs to see a system behind them. Dragons hide themselves before they
have enough power and size. To see Dragons you should attentive seek them.
You must study the nature of Dragons and their behaviour.

The big aid can be the previous experience. The projects devoured by Drag-
ons can show the source and the conditions of the Dragons’ growth. Of course
the best way is to learn on errors of others. The same mistakes repeat again and
again in different projects. It is good to know how things can be done proper,
the better knowledge is how they may go wrong. You should become aware of
problems in your project. Even of small problems. If you know about a possible
mistake, you can avoid it. If you know some examples and recognise a Dragon
that generates such errors, you can make systematic protection. It helps you
to avoid a class of errors, even you cannot predict the possibility of some errors
from this type.

Dragons have evil nature. In case you don’t protect your project from them,
they will use week places to attack. Your defence should be optimal. It is
not good to spend extra resources to make unnecessary protection. It is worse
to spend much more resources to rescue your project from Dragons that are
already breach bad protection. You shouldn’t forget that if an error is possible,
you must prevent it. In other case you get this error sooner or lather only
because Dragons have evil nature. Don’t feed your Dragons.

For instance each programmer knows (or at least should know) that memory
allocation can fall. This is a rare event, but it is possible. An enormous amount
of errors in different programs exist only while programmers hadn’t insert a
small code unit that checks the situation where no memory is returned.

Other similar example is the rule to assign an initial value to each variable.
The unexpected value can influence the behaviour of program in rare cases and
in an unpredictable manner. As in previous example it is simple to code an
initialisation for each variable. In case these protection steps are ignored, the
cause of program failure is difficult to find. The search of only one not initialised
variable in a big program may (and many times had) waste many man months.

The protection from Dragons and prevention of Dragons’ growth has one
disadvantage. It cannot solve current problems. To overcome today’s Dragon
you must begin yesterday. The knowledge about Dragons cannot bring you a
big help in a trouble of Dragon War. To save resources in the future you must

per cent, but adequate plan cannot be based on such hope. In case the company has a good
process for software development, the improvements of such process cannot be big. In case
there are possible the improvements of productivity about 50 or 100 per cent, the company
has a very bad process yet. In other words it doesn’t know how to develop software. Of course
it is naive to wait from such company a correct use of the promising method. Consequently
the bigger the changes may be the less probably they are.

14



spend resources today. This may demoralise somebody who hope in a quick
improvement. Unfortunately good luck is not such frequent as bad luck. Rapid
changes are possible. Most probably these will be changes from bad to worse.

In case you don’t believe in a magical help, you must prepare yourself to
long work. You’ll go forward step by step. You reduce the complexity of your
future work. The improvement is systematic. Your target is the absence of bad
decisions. You cannot measure how many bad decisions you haven’t made. You
won’t get impressionable results. You have nothing to show for the people that
believe in Silver Bullets. Of course nothing except the results of your work.

The software developers are paid not for code writing, not for drawing dia-
grams and not for sitting for monitor. They are paid for making decisions. All
other activities are assigned to support this process. If the developers make bad
decisions, the money and time are wasted and the effectiveness of other things is
not important. The Dragons disturb the root process of software development.
This is a significant ground to pay attention to these virtual software monsters.

11 Conclusion

You have read this paper. I guess you feel that it is incomplete, muddled or
controversial. It is such while it must be. As I had written I know how to
make a “right” article. This paper is not an article. This is the first part of
the documentation of the project “ErrorLog”. Of curse this is not a “right”
documentation. “ErrorLog” isn’t a “right” project too. I’d like to tell you
about the history of it.

The goal of this project is to find methods rising effectiveness of the soft-
ware development in small companies. The first studies showed that the major
grounds of ineffectiveness are bad decisions.15

The logical conclusion from such situation was to find methods that can
prevent bad decisions. Unfortunately the attempts to discuss such methods with
software developers, team leaders and project managers pointed the light on a
very interesting problem. For the technical specialists the software management
is a look over the back of the developer’s head at the computer monitor.16

The “ErrorLog” demand quite other point of view. It was started as tool
that simple logs the errors. Step by step the human as the source of these errors
became more important. Now “ErrorLog” is a look at the face of software
developer.

The first attempts to write a “right” documentation for “ErrorLog” failed.
The people weren’t ready to consider a human, but were seeking for a software
tool that can free they from such necessity. On the seek for right form of the
documentation I turned the log of errors into The Path of Dragons. Let’s see
which results can give this trick.

“The Dragons” are a documentation. It helps you change your mind and
move your point of view.17

15 The big companies are worse on this field, but they can live in such conditions, at first
due good marketing. A major part of decisions in a big company is based on the internal
politic not on the economic. A small company may die due few bad decisions and is much
more interesting to be analysed.

16 The results of these are many funny things. The Seek for Right Silver Bullets is not the
worst of them. They will be described lather in “The Dragon of Silver Bullets”.

17 The good documentation always changes the user. The simplest situation is, where it

15



For several years I used to apply analogous methods. These were things far
away from the software. The results of those experiments were good. Let’s see
what results will be this time.

You have made the first step into the world of Dragons. A step into black
areas of human’s mind. The black areas where monsters live.

There are many kinds of Software Dragons. All of them have his own effect
on the project, on the project team, on the team member. Each Dragon has
his own character. Most of them use not only intellectual but also emotional
levers to steer a human or a team by the process of making decisions. The
world of Software Dragons is very interesting but very complex. They have a
good defence. Usually different kinds of Dragons fight together. The facility to
hide is excellent too. It’s impossible to study simultaneously all Dragons leaving
together in one software project. Each of them is a subject for a separate study.

In the next part I’ll describe the simplest kind of the Dragons. He has pure
informational nature and cannot disturb the emotional sphere of the human.
This is The Dragon of The Source Code.

12 Acknowledgements

At first I’d like to thank Gerald M. Weinberg for his excellent books, for his
useful comments and for the suggestion to start the changes from myself.

I would like to thank Andrey V Khavryutchenko, Ruslan Shevchenko, Michael
V. Tokarev and George Seriakov for valuable help, comments and criticism. I
would like to thank Vladimir Koen-Tsedek for his explanations of language
problems; Brian Henderson-Sellers and Paul Herbert for editing of first versions
of this paper; Alexander V.Didytch, Alexander Drougov Anton A. Mints, Bo-
hdan Sheptunov and Bernhard Treutwein for useful comments; Simon Cant for
the model of the cognitive complexity of software; the members of RCSE group
for very interesting discussions and experiments.

I would also like to thank all those involved in strange discussions about the
nature of software and answered my stupid questions.

Of course big thanks for all people which thought me to understand the
human.

The text is written in LATEX.

adds knowledge. The better documentation teaches the user to live with new knowledge.

16

http://www.geraldmweinberg.com
http://www.kbi.kiev.ua/~akhavr
http://www.aha.ru/~seriakov
http://mozg.freeservers.com
http://www.aha.ru/~seriakov/SE_page.htm
http://www.tug.org

	Introduction
	 The Software Bugs
	 The three results of a software project
	The third outcome
	 Why the Dragons? 
	 The bad decision and its role in a software project
	 The definition of The Software Dragons
	 How Dragons can help you
	 You can call things with their names
	 You can avoid the fear and other emotions
	 You can compose a life model
	 You can stimulate your own creativeness

	 The Dragon Wars
	 How to overcome Dragons
	 Conclusion
	 Acknowledgements

